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Zero-E�ort In-Home Sleep and Insomnia Monitoring using Radio
Signals
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Insomnia is the most prevalent sleep disorder in the US. In-home insomnia monitoring is important for both diagnosis and
treatment. Existing solutions, however, require the user to either maintain a sleep diary or wear a sensor while sleeping. Both
can be quite cumbersome. This paper introduces EZ-Sleep, a new approach for monitoring insomnia and sleep. EZ-Sleep has
three properties. First, it is zero e�ort, i.e., it neither requires the user to wear a sensor nor to record any data. It monitors the
user remotely by analyzing the radio signals that bounce o� her body. Second, it delivers new features unavailable with other
devices such as automatically detecting where the user sleeps and her exact bed schedule, while simultaneously monitoring
multiple users in di�erent beds. Third, it is highly accurate. Its average error in measuring sleep latency and total sleep time is
4.9 min and 10.3 min, respectively.
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1 INTRODUCTION
Insomnia and sleep deprivation are common health problems in the US. One in every three Americans do not get
enough sleep, and about 10% of the population su�ers from chronic insomnia [37]. Chronic insomnia increases
the risk of heart disease, kidney failure, high blood pressure, diabetes, and stroke [33]. The statistics are even
worse among the elderly, where 50% of seniors experience periods of insomnia that last for weeks, months or
even years [37, 48]. In-home sleep monitoring is important for both detecting insomnia and treating it. People’s
impression of their sleep can be wildly wrong, o� by hours in some cases [16, 42]. On the other hand, older
patients may not report their insomnia symptoms in the �rst place [37]. Further, there is an increasing interest in
replacing drug-based treatment with Cognitive Behavior Therapy for Insomnia (CBT-I). CBT-I is based on gradual
adjustments of sleep schedule and the time spent in bed, and hence in-home monitoring of those parameters is
bene�cial for treatment tracking [24].

Monitoring insomnia is di�cult. The gold standard in sleep monitoring is overnight Polysomnography (PSG),
conducted in a hospital or sleep lab, where the subject sleeps with EEG, ECG, EMG, respiration, and pulse
monitors. PSG does not work well for insomnia because sleeping away from one’s bed with obtrusive sensors
causes di�culties in falling asleep that are unrelated to insomnia (the �rst night e�ect [14, 40]). In fact, most
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insomnia studies use patient diaries, requiring people to keep daily records of when they go to bed, how long it
takes them to fall asleep, how often they wake up at night, etc. This approach creates signi�cant overhead and is
hard to sustain over long periods. More recently, actigraphy-based solutions have been used to track motion
and infer sleep patterns, but they must instrument the user with accelerometers at the wrist or hip [36]. Many
people do not feel comfortable sleeping with wearable devices [17], and older adults are encumbered by wearable
technologies and may simply take the device o� creating adherence issues.

Insomnia and long term sleep monitoring should be zero e�ort without sacri�cing accuracy. It should provide
in-home continuous monitoring without requiring the user to wear a device or write a diary. It should also
measure the key sleep parameters used for insomnia assessment. This means it needs to measure the time between
going to bed and falling asleep, or sleep latency (SL), the percentage of sleep time to the time in bed, or sleep
e�ciency (SE), the total sleep time (TST), and the amount of wakefulness after falling asleep (WASO).

We introduce EZ-Sleep, a sleep sensor that achieves these goals. EZ-Sleep is zero e�ort – all that the user has
to do is to put EZ-Sleep in her bedroom and plug it to the power outlet. EZ-Sleep works by transmitting radio
frequency (RF) signals and listening to their re�ections from the environment. By analyzing these RF re�ections,
EZ-Sleep automatically detects the location of the user’s bed, identi�es when she goes to bed and when she
leaves the bed, and monitors the key insomnia assessment parameters SL, SE, TST, and WASO. Further, because
it directly measures the user’s bed routine, i.e., when she enters and exits the bed, EZ-Sleep can be used in CBT-I
to monitor patient compliance with prescribed changes in her bed schedule.
The design of EZ-Sleep builds on recent advances in wireless systems, which show that by transmitting a

wireless signal and analyzing its re�ections, one can localize a person and track her vital signs without any
wearables [11, 12]. However, past solutions that leveraged these advances in the context of sleep have limited
themselves to analyzing the user’s vital signs (mainly breathing) as extracted from the RF signals [32, 39, 44, 49].
In contrast, EZ-Sleep uses the RF signal to extract both the user’s breathing and location, and combines both to
infer the user’s bed schedule and sleep quality. In the absence of information on when the user goes to bed and
leaves the bed, past work cannot compute key insomnia parameters like sleep latency, sleep e�ciency and WASO.
Furthermore, most past solutions rely on the Doppler e�ect which is highly sensitive to interference from other
sources of motion in the environment such as potential neighbors or �atmates (see 9.1 for empirical results). In
contrast, by leveraging RF-based localization, EZ-Sleep is not only robust to motion in the environment but can
also monitor the sleep of multiple subjects at the same time.

EZ-Sleep

Fig. 1. EZ-Sleep setup in one of our subjects’ bedroom.

We designed EZ-Sleep as a standalone sensor as shown in Figure 1. Our design involves four components that
work together to deliver the application:
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• Monitoring the user via RF signals: EZ-Sleep uses an FMCW radio and an antenna array to separate RF
signals based on the location of the re�ecting body. This allows it to track both the location of the user
and her breathing, and use both to extract the user’s sleep patterns.
• Identifying bed location: EZ-Sleep introduces a novel algorithm for automatically detecting where the
user goes to sleep. The algorithm �rst identi�es locations where the user stays stationary like chairs,
desks, couches and beds. It then classi�es these locations as bed vs. non-bed. To do so, EZ-Sleep leverages
RF-based localization to analyze how the user uses the space. It builds a map of where the user spends
her time. Using tools from image processing and machine learning, EZ-Sleep segments the map into
meaningful areas.
• Detecting bed entries and exits: Knowing when the person goes to bed is essential for both assessing
insomnia and monitoring compliance with CBT-I. But, since RF-localization error can be as high as one
meter, we cannot simply rely on the location estimate to detect when the person goes to bed. Instead,
EZ-Sleep employs a Hidden Markov Model (HMM), where location measurements act as observations of
the hidden state which takes one of the two values: in-bed or out-of-bed.
• Classifying sleep and awake periods, and computing sleep parameters: Once it knows the user is in bed,
EZ-Sleep zooms in on the RF signal re�ected from the bed region. EZ-Sleep feeds this signal to a deep
neural network model, which operates in two phases. In the �rst phase it learns to classify the time in
bed into sleep and awake epochs. In the second phase, it zooms in on the �rst transition from awake to
sleep, and trains a second model customized for learning sleep onset. Once it knows entry and exit from
the bed, the sleep onset, and any later awakenings, EZ-Sleep can compute all of the insomnia assessment
parameters described above.

We have implemented EZ-Sleep and evaluated it in 8 homes. We collected a total of 100 nights of sleep, including
30 nights with an EEG-based FDA-approved sleep monitor [7]. Our results show correct bed identi�cation in
all places. The results also show that EZ-Sleep is highly accurate. Speci�cally, its average errors in computing
SE, SL, TIB, TST, and WASO are 2.8%, 4.9 min, 3.2 min, 10.3 min, 8.2 min respectively. These results show that
EZ-Sleep’s accuracy is comparable or better than medical grade actigraphy devices [19, 20, 30].1 Thus, EZ-Sleep
can deliver clinically meaningful sleep parameters without asking the user to wear any sensor or record her sleep
data. Furthermore, the results also show that EZ-Sleep can monitor the sleep of two subjects simultaneously,
making it the �rst RF-based sleep monitor that works with multiple people.
Contributions: To our knowledge, EZ-Sleep is the �rst RF-based sleep sensor that automatically detects bed
locations, identi�es bed entries and exits, and monitors key insomnia parameters like sleep latency, sleep e�ciency,
total sleep time, and wake after sleep onset. It is also the �rst RF-based sleep sensor that can monitor multiple
users simultaneously. These properties are enabled by the observation that sleep monitoring can bene�t from
combining location tracking with temporal analysis of the user’s breathing signal, both extracted from RF
re�ections. We introduce new algorithms that use tools from image processing and machine learning to analyze
the user’s location and breathing signals and infer her bed schedule and sleep quality. We further implement our
design as a standalone sensor which we deploy and evaluate in eight homes, demonstrating its high accuracy.

2 BACKGROUND AND RELATED WORK
We �rst provide background on insomnia monitoring and then describe past solutions, both in industry and
academia.

1Medical grade actigraphy errors are as follows: SE: 3~5%, SL: 0.2~3 min, TST: 8~19 min, and WASO: 12 min [19, 20, 30]. Since actigraphy
cannot measure TIB, these estimates require the user to push a button to indicate going-to-bed and leaving-bed.
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2.1 Key Insomnia Parameters
Insomnia and sleep deprivation are typically assessed using the following sleep parameters [30, 41]:

• Sleep latency (SL) is the time between going to bed and falling asleep. Sleep latency is perhaps the most
common metric for assessing insomnia. A sleep latency that is longer than 30 minutes for more than two
nights per week is a sign of insomnia.
• Total sleep time (TST) is the total time in bed actually spent in sleep. It captures whether the person gets
enough sleep.
• Time in Bed (TIB) which is also called time from light out to light on. It puts an upper bound on the sleep
time and can show that the person does not allow herself enough time to sleep.
• Sleep e�ciency (SE) is the ratio of the total sleep time to the total time in bed, (i.e., TST/TIB).
• Wake after sleep onset (WASO) is the total duration of wakefulness occurring after sleep onset. It captures

sleep fragmentation, or the inability to sustain sleep. For example, some older people wake up after a few
hours of sleep and cannot go back to sleep.
• Number of awakenings: This metric counts the number of awakenings that last for more than 5 minutes
(NA > 5). In this paper, we experiment with healthy individuals, and have not had any reports of night
awakenings. Hence, we do not report results for this metric. However, our design can compute this metric
because it classi�es all 30-second epochs as awake or asleep, as explained in section 7.

Figure 2 shows the relation between these sleep parameters.

In Bed

Sleep Sleep

SL

Enter Leave

Sleep Onset WASO

Fig. 2. The definition of all sleep parameters.

2.2 Sleep Monitoring Solutions
Laboratory-based Polysomnography (PSG) is the medical gold standard for sleep monitoring. It requires the
person to spend the night in a sleep lab connected to a dozen sensors, including EEG scalp electrodes, an ECG
monitor, a respiratory chest band, a nasal probe, etc. PSG monitors many aspects of sleep including sleep stages,
sleep parameters, and sleep apnea. Yet, PSG is both highly obtrusive and impractical for long term studies [28].
The discomfort with the sensors changes the user’s sleep behavior, making it hard to measure insomnia. Further,
since night-to-night sleep variability is a important factor for diagnosing insomnia [15], a single night of study is
often insu�cient.

Patient diaries are commonly used for monitoring insomnia. The person is asked to keep daily records of when
they go to bed, how long it takes them to fall asleep, how often they wake up at night, etc. Writing sleep diaries
requires a signi�cant e�ort and it is hard to sustain for long periods of time. Medical grade actigraphy has been
used to track user movement to infer sleep. Actigraphy measures user motion using accelerometers tied to a
person’s wrist or hip. However, some people feel encumbered to sleep with wearable devices [17] , and older
people and kids may simply take the device o� during the night.
The consumer industry has developed wellness devices that track sleep. They encompass activity trackers

such as FitBit and Jawbone, smartphone-based solutions like Sleepbot and Sleep Cycle, bed side sensors or bed
pads inserted under the sheets such as Beddit [2–4, 6, 8]. These solutions have lower accuracy than the medical
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grade devices [22]. Some of these solutions require the user to input when they are physically in bed [5] or may
have lower accuracy if this information is missing [2].
The research community has shown a great interest in monitoring sleep using smartphones or systems

that sense environmental factors [17, 18, 23, 25, 27, 35]. They infer sleep quality using data from microphones,
accelerometers, cameras, phone usage, etc. However, recording audio and video information throughout the
night may still be considered obtrusive for some people due to privacy and comfort reasons [39]. Also, these
systems may not be easy to con�gure for certain sectors of the populations, like the elderly or children.

In terms of technology, EZ-Sleep is closest to past work on using radio signals for monitoring sleep stages or
in-bed movements [31, 32, 39, 44, 49]. All of these systems work by extracting a person’s breathing using radio
signals that bounce o� the person’s body. They then classify the night into periods that correspond to di�erent
sleep stages or body movements. EZ-Sleep di�ers from these systems along four axes. First, EZ-Sleep analyses
sleep behavior both in time and space. It does so by combining RF capabilities to extract breathing and location.
Second, EZ-Sleep computes sleep parameters unavailable to past systems including TIB, SL, and WASO. Third,
EZ-Sleep introduces new algorithms that automatically identify where a person sleeps and track her bed entries
and exists. Fourth, EZ-Sleep can simultaneously monitor multiple users with one device.

3 EZ-SLEEP OVERVIEW
EZ-Sleep is an in-home sleep monitoring system that requires zero user e�ort. It operates by transmitting a low
power wireless signal and capturing its re�ections o� users in the vicinity of the device. By analyzing the signals,
it learns the bed location, when the user goes to bed, and when she falls asleep. Based on this knowledge, it
generates sleep parameters including Time in bed (TIB), Sleep latency (SL), Total sleep time (TST), Sleep e�ciency
(SE), and Wake after sleep onset (WASO).

The EZ-Sleep sensor is a software-hardware system whose operation involves the following key steps:
(1) Capturing the user’s location and breathing using RF signals.
(2) Inferring bed areas by observing the user’s movements through space.
(3) Detecting bed entry and exit events by interpreting noisy location measurements.
(4) Classifying sleep versus awake when the person is in bed and estimating sleep parameters.

In the following sections, we explain each step in detail.

4 EXTRACTING LOCATION AND BREATHING FROM RF SIGNALS
The relationship between motion and sleep is intuitive and constitutes the core of all actigraphy-based sleep
sensors. But sleep sensors, so far, have looked only at the amount of motion over time – i.e., actigraphy. We
observe however that some sleep parameters, such as going-to-bed, can be better inferred by analyzing motion
as a function of space. Wireless signals are a powerful tool to capture a person’s motion both in time and space.
When the person is stationary, her motion over time is mostly her breathing motion [13]. Thus, in designing
EZ-Sleep, we leverage these RF capabilities. The literature already shows the capacity of RF signals to capture
both location [11, 12, 29, 45] and breathing [13, 39, 46]. We introduce these techniques brie�y and refer the reader
to [10, 11, 13] for more information.
EZ-Sleep uses a combination of an FMCW radio and an antenna array. The FMCW technique measures the

distance of the re�ecting body from the device, whereas the antenna array measures the spatial direction of the
re�ector with respect to the device. Thus, together, they allow us to divide the x-y plane into pixels and separate
RF re�ections from di�erent pixels in space.
Once we have separated the signal from each x-y pixel, we need to �rst identify human re�ections from

re�ections of other objects in the environment such as walls and furniture. To do so, we apply two di�erent
�lters to the signals to capture two types of human motions. The �rst is a high pass �lter that captures fast and
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non-periodic human motion, including walking and any hand or limb movements. The second is a band pass
�lter around the breathing frequency that captures a user’s chest motion when she is breathing and not actively
moving other body parts. Note that since furniture and walls neither move at a periodicity similar to human
breathing, nor have non-periodic motion, their re�ections disappear at the output of both �lters.2 Applying these
�lters to the signal allows us to detect whether the x-y pixel has a human at that time, and whether the human is
only breathing or he is performing a bigger non-periodic motion.
In our implementation, we generate one measurement per pixel every 50 milliseconds. Each measurement

contains a time sample of the RF signal re�ected from that pixel at that time, and a tag that states whether the
pixel has a moving person, a stationary person, or is empty (i.e., has no person). We project the area covered by
EZ-Sleep into a 500-by-500 pixel image, where each square pixel occupies a 0.024-by-0.024 square meter space.

Finally, we note that RF-based localization su�ers from environment noise and multi-path problems, and its 90
percentile error can be more than one meter [11, 29, 45]. Similarly, breathing signals extracted from RF re�ections
are highly sensitive to body motion, and can be erroneous when the user moves her limbs [13]. Our system is
designed to be robust to these phenomena and can measure sleep parameters accurately in the presence of noise.

5 BED IDENTIFICATION
In this section, we describe EZ-Sleep’s algorithm for detecting beds in the home. The algorithm �rst identi�es
areas in the home where the user is mostly stationary. Such areas span the bed and various seating places such as
chairs and couches. Next, EZ-Sleep identi�es which of these stationary areas are beds.
Potential bed areas are places where people stay stationary for long periods of time. Thus, we would like to

identify areas in the home where the radio sees the person stationary for signi�cant periods. Recall that at every
50 millisecond, we have a tag that identi�es every pixel as being stationary, moving, or empty. Thus, the �rst step
of our algorithm computes a 2D histogram of the stationary pixels in the x-y plane. The histogram is computed
every day. Regions where the person sits or lies down will accumulate many stationary tags and hence will show
up as peaks in the histogram.
Figure 3 shows example histograms from two of the homes where we deployed EZ-Sleep. The locations of

EZ-Sleep are shown as the blue rectangles and the black lines indicate walls or boundaries of beds or desks. The
darker the pixels are the more stationary time is spent in that location. The �gure reveals three observations:
First, the distribution of stationary pixels does indeed reveal the location of actual seating or sleeping areas. For
example, the dark regions in the �gure refer to real beds, couches and desks. Second, EZ-Sleep can detect more
than one bed and can identify beds and seating areas outside the room where the device is installed. Third, the
stationary pixels do not span the whole bed region. This is because most people sleep on a particular side of the
bed. Besides, stationary pixels correspond to locations where there is some breathing signal –i.e., the chest, face,
and abdomen. This description of the sleeping area is more relevant to our task than the whole physical space of
the bed. Fourth and most importantly, the stationary regions can be connected in the histogram. For example,
one of the beds in the �gure appears connected to the desk. Simply by looking at the histogram, EZ-Sleep cannot
tell whether this is one big bed or two distinct stationary areas. Thus, our next step is to separate the distinct
seating or sleeping areas observed by the device.
In the second step, our algorithm takes the 2D histogram as input and extracts distinct seating or sleeping

areas. We frame this problem as an image segmentation problem – i.e., we would like to assign each pixel a label
such that pixels with the same label share the same area identity (i.e., desk, couch, or bed). Common approaches
to image segmentation take initial labels of a few pixels, and �nds boundaries dividing regions with di�erent
initial labels. Such initial labels are called markers. But, how can we assign initial labels to the images in Figure 3a

2Objects with mechanical vibration such as fans and air conditioners are detected and eliminated. They behave as outliers because their
periodicity is much higher than breathing and they do not move from one pixel to another for multiple days.
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Bed

Bed

Desk

Couch

(a)

Bed

Desk

(b)

Fig. 3. Images of the distribution of stationary location measurements from two homes. The locations of EZ-Sleep are shown
as the blue rectangles and the black lines indicate walls or boundaries of beds or desks. Dark regions indicate areas where
people stay stationary for long periods of time, such as beds, desks or couches.

such that the bed and the desk have di�erent labels automatically? Simply using local maxima as initial distinct
labels will lead to over segmentation because each area can have multiple local maxima. Smoothing the image
�rst does not help because it blurs region boundaries.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Estimating potential bed areas. The image of the stationary location distribution is shown in (a). This image is
binarized using Otsu thresholding, resulting in (b) where the red pixels form the foreground. To obtain the markers for
watershed, we first compute the connected components as shown in (c). Computing a distance transform results in (d) which
is thresholded to obtain the markers in (e). The watershed segmentation outputs the potential bed areas as shown in (f).
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To assign initial labels for the segmentation algorithm, we use a processing pipeline explained in Figure 4.
To estimate the initial labels, we binarize the input image (Figure 4a) into foreground and background (red and
white regions in Figure 4b) using Otsu thresholding [38]. In the binarized image (Figure 4b), the desk and the bed
are still connected. We can make the distinction between two areas bigger by computing the distance transform,
i.e., the nearest distance to the background, for each pixel of this image. Given the transformed image (Figure 4d),
we can apply a threshold to get the central regions of both the desk and the bed (Figure 4e). Note that to set a
threshold that generalizes to di�erent areas in di�erent homes, we normalize the transformed image with respect
to the size of each connected component (Figure 4c) before thresholding. After thresholding, the connected
components of the thresholded image (Figure 4e) can be used as the initial labels for the segmentation algorithm.
Figure 4f shows the �nal segmentation result using Watershed algorithm [34]. We reject regions whose area is
too small to be a bed. The remaining regions are the potential bed areas.
The third and last step in our algorithm is to identify beds from other areas where the user may spend some

time while stationary, like a couch or a desk. People may spend long time in areas other than beds. Using only the
amount of time spent in an area as the classifying feature is not enough. Also, people’s schedule changes from
day to day. A user can spend more time on a couch watching TV than sleeping in the bed during the weekend.
Similarly, before a deadline a user can spend more time working at her desk than sleeping in her bed. The task is
further complicated by the fact that we want to discover multiple beds in the same house and di�erent people
may have very di�erent schedules.

To address these problems, we analyze the temporal activities in each potential bed area to extract additional
features and look at the consistency of features across multiple days. Speci�cally, in addition to the amount of
time the user stays in an area, we also use the ratio of time being stationary versus moving. To compute this
feature, we take the sum of all stationary tags for all pixels in the area and divide it by the sum of all moving tags
for all pixels in the area. Figure 5a visualizes around two weeks of data for 10 potential bed areas identi�ed at the
�nal output of the segmentation pipeline in Figure 4. The two axes refer to the two features: total amount of
time, and ratio of stationary time to moving time spent in that area. Each day contributes one data point to each
detected area. The circles refer to real beds, whereas the triangles refer to couch and desk areas. We remove data
points where people spent zero amount of time from this �gure. We can see that the desk and couch areas form a
cluster in the lower left corner. There are outliers as a person may sleep less on some days or a couch may look
like a bed occasionally. To better understand this, we highlight data from one bed region and one desk region in
Figure 5b. If we look across multiple days, data from the bed and the desk stay in their respective clusters.

Given the analysis, we use the above two features to train a bed classi�er using SVM with a linear kernel. To
determine if a region is a bed, we look at the its predicted labels over the past D days. We identify the region as
bed if the percentage of days labeled as bed is greater than � :

�̂i =

8>>><>>>:Bed , i f

D�1P
d=0
kf (Ai ;d ) k
D > �

Not Bed , otherwise

, (1)

where �̂i is the �nal prediction for area Ai , f (.) is the classi�er, f (Ai ;d ) is the binary predicted results for area
Ai on the dth day. Our default is D = 7 and � = 5/7. Figure 5 shows the classi�cation boundary of our classi�er.

6 DETECTING BED ENTRY AND EXIT
After identifying the bed areas, we consider the problem of detecting when a user goes to bed and when she leaves
the bed. RF-based localization returns the location of the people in the environment. However, as mentioned in
Section 4 their errors can be as large as one meter. An error of plus or minus one meter is pretty much the size of
the bed. It can easily move a person from the bed to outside the bed. Similarly, a person who is changing his
clothes next to the bed may look already in bed. These localization errors have little impact on detecting the

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 59. Publication date:
September 2017.



Zero-E�ort In-Home Sleep and Insomnia Monitoring using Radio Signals • 59:9

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0 10 20 30 40
Stationary/Moving Ratio

Ti
m

e 
in

 R
eg

io
n 

(h
ou

rs
)

Type
● Bed

Others

(a) Figure shows the two features for 10 po-
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Fig. 5. Identifying actual beds.

bed region because in that case we can use the histogram of location data over a whole day, which allows us to
average out the errors. In contrast, when detecting entries and exits from the bed, we would like to detect them
as quickly as possible because any delay in detecting such event will appear as an error in our estimate of sleep
latency.
So, how do we accurately track when the user enters or leaves her bed? Instead of directly mapping the

measured locations to in or out of the bed, EZ-Sleep considers the location measurements as noisy observations
of the true state. The true state –i.e., whether the user is in or out of bed – is hidden. EZ-Sleep uses a Hidden
Markov Model (HMM) to infer the true state from the observations. Below we give a short primer on HMM
followed by our particular HMM design.

6.1 HMM Background
A hidden Markov model is a statistical model that tries to explain a sequence of observations with a sequence
of hidden states. Time progresses in steps. In each time step, the model is presented with a new observation
which it uses to decide whether to stay in the current state or transition to some other state. The key assumption
underlying an HMM is that the probability of an observation given the current state is independent of any other
observation or state. Mathematically, let us model the observation at time, t , as ot and the hidden state as st . If
P (X ) denotes the probability of event X , then the assumption can be represented as:

P (ot |s0,s1,s2, ...,st�1,st ) = P (ot |st ) (2)

Thus, the joint probability of having a sequence of states, {st }Nt
t=1 and observations, {ot }Nt

t=1 is given by:

P ({ot ,st }Nt
t=1) = P (s0)P (o0 |s0)

NtY

t=1
P (ot |st )P (st |st�1) (3)

To model a problem as an HMM one has to de�ne a set of possible states S = {S1, ....,SM }, a set of observations
O = {O1, ....,ON }, aM ⇥M transition probability matrix T, and aM ⇥N emission probability matrix E. Transition
probability is the probability of transitioning from state, Si to Sj in consecutive time steps, i.e., Ti j = P (st =
Si |st�1 = Sj ). The emission probability is the probability of an observation given a state, i.e, Ei j = P (ot = Oj |st =

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 59. Publication date:
September 2017.



59:10 • Hsu et al.

Si ). The set of observations and states is typically picked by the designer, and the transmission probabilities and
emission probabilities are learned from the data.

6.2 Design of Our HMM
We use the HMM hidden states to represent whether the user is in the bed or outside the bed at each time step t .
We denote the state corresponding to being in the bed as S0 and outside the bed as S1.

We de�ne our observations by �rst dividing the space around the bed region into three areas: center area (R0),
bu�er area (R1), and outer area (R2). The center area is the bed region we found in section 5, and the bu�er area
is a 50-centimeter-wide area that encircles the center area. The outer area is the rest of the space. We de�ne
9 possible observations which correspond to the user transitioning from one of the three areas to another or
staying in the same area. Thus, the observations for the HMM are the set of tuples

O = {(Rs ,Re ) 8Rs ,Re 2 R0,R1,R2} .

To detect which observation has occurred in each time step, we divide time into consecutive windows of 5
seconds each. For each window we detect the location of the user from the moving and stationary pixels. We
average the location in each second and map it to one of the three area: R0, R1, or R2. Then Rs denotes the area
that corresponds to the �rst second of the window while Re is the area that correspond to the last second of the
window.

We specify the bu�er area around the bed because we are often unsure of the person’s exact location. To
decide a person’s state, we need to look a bit into the past and the future. Having the bu�er area helps us encode
di�erent beliefs in these observations as opposed to simply dividing the space into inside versus outside the bed.
Given the learned bed regions from the last section, this choice of observations does not require any information
speci�c to the home. Thus, we can use the same HMM for all homes. In addition, we transform raw location data
into discrete observations for better generalization of our model. If we use a continuous input instead (e.g., the
distance to the center of the bed), because people stay at di�erent locations away from beds in di�erent homes,
the model trained at few places cannot generalize well to di�erent homes.

If multiple bed regions are detected, we generate di�erent observations for each bed. EZ-Sleep uses mechanisms
similar to [11] to track raw locations of users to form observations for the HMM.
Learning and Inference: The goal of the learning algorithm is to learn the transition probabilities matrix, T ,
and the emission probabilities matrix, E. In the absence of priors, the typical way to learn T and E is to compute
their statistics using labeled data. Thus, we manually label the training data with the correct states and use them
to learn T and E.

After the learning phase, the model can be used independent of the environment given the bed region. In the
inference phase, we give the HMM the sequence of observations for one day and �nd a sequence of states that
best explain those observations using the Viterbi algorithm [21]. This means that we can give the HMM the
observations extracted from the areas around each detected bed, and have the HMM predict for us when a person
enters the bed (i.e., the state transition from S1 to S0) and when she exits the bed (a transition from S0 to S1).

7 ESTIMATING SLEEP PARAMETERS
So far, we have learned the bed area and when the user enters and leaves the bed. To estimate the sleep parameters
in Section 2, we still need to detect when the user falls asleep, and the sleep-awake intervals throughout a night.
To do so, we divides the time in bed into 30-second epochs, as typical in sleep studies. We would like to classify
each epoch into sleep vs. awake and identify the �rst epoch in which the person falls asleep, which is the sleep
onset.
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The information of whether a person is asleep or awake is encoded in her breathing pattern and body
movements [23, 39, 44]. To extract this information, we need to ensure that the RF signal that we provide to
the classi�er, in each epoch, re�ects the user’s breathing and movements and is �ltered from any source of
interference. This is challenging because there are many other sources of motion in the environment, e.g., rotating
fans, neighbors whose movements may impact the signal, and even curtains moving due to air conditioning.
These extraneous movements can impact the signal and completely overshadow the small movements caused by
human breathing. As we show in Section 9.1, having the neighbor walking in another room from behind the wall
can easily interfere with the breathing signal.

To separate breathing from extraneous interference, EZ-Sleep uses the identi�ed bed areas as spatial �lters to
�lter out motion coming from outside the bed. Speci�cally, we zoom in on the pixels in the bed areas and analyze
only the signals re�ected from those pixels. For each epoch, we consider the signals re�ected from pixels tagged
as stationary or moving (i.e., non empty). We use these signals as estimates of the user’s breathing pattern and
body movements.

For our classi�er, we build on recent success of convolutional neural network (CNN) in classifying time signals
[9]. The bene�t of this classi�er is that we do not need to pick features manually. We can directly pass the signal in
each epoch to the classi�er. We build a CNN classi�er with a 14-layer residual network model [26]. Our network
architecture is similar to the 18-layer network described in [26] but with no repetition for the conv4 and conv5
layers. The classi�er takes the spectrogram of the signal in each epoch as input, and outputs the probability of the
person being asleep. Hence for each night, we obtain a series of probabilities {pi }n , where n is the total number
of epochs for that night, and i is the ith epoch. We use this CNN classi�er as a building block for estimating sleep
onset time, Total sleep time (TST), and Wake after sleep onset (WASO).
Sleep Onset Time: Predicting the onset of sleep, using the CNN classi�er alone would not give us enough
accuracy. The reason is that in training the CNN, the model tries to maximize the overall accuracy of predicting
asleep-awake for the entire night, but not the accuracy of detecting the exact sleep onset time. Thus, we use this
�rst CNN classi�er as the �rst phase in detecting sleep onset. Speci�cally, for each night, we consider the �rst
epoch in which the probability of sleep pi is larger than 0.5. We then take a window of 15 minutes before and 15
minutes after that epoch. This gives us the sequence of epochs around the sleep onset time.
We build a Gradient Boosting Regressor on top of the above CNN with special focus on the sleep onset

transition. The regressor takes as input the signal in the epochs in the above window to learn the exact sleep onset.
In this case, we would like to learn which epoch is the sleep onset. Since this function is an impulse function, it
cannot be directly learned by the regressor. It has to be smoothed �rst. Thus, we smooth it by convolving it with
a Gaussian kernel. For each epoch, the regressor predicts the probability of being the sleep onset epoch. The
epoch with the largest probability score is considered the sleep onset epoch.
TST and WASO:With the predicted sleep probabilities {pi }n and sleep onset time �, we can estimate TST and
WASO. Speci�cally, TST is the total duration of all epochs for which pi > 0.5, starting after epoch �. Similarly,
WASO is the total time durations of all epochs for which pi  0.5 starting after epoch �.
SE and SL: Finally, sleep e�ciency (SE) is computed directly as TST/TIB, and sleep latency (SL) is the time
di�erence between the last entry to bed before epoch � and the beginning of epoch �.

8 EVALUATION SETUP
We evaluated EZ-Sleep through actual deployments in 8 homes. We collected more than 100 nights of sleep data
from 10 healthy subjects whose age spans 23 to 45 years. Out of these, all subjects slept with SleepPro�ler [1, 43],
which is an FDA-approved medical grade sleep monitoring device, for a total of 30 nights to obtain the ground
truth for our sleep parameters. We install the EZ-Sleep device in the bedroom of the subject. Figure 7 shows
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the location of the device in all 8 homes. In our deployments, two of the homes have two beds in the device’s
coverage area. All subjects have been consented in accordance with our IRB.
SleepPro�ler (used to obtain the ground-truth) has three frontal EEG electrodes to measure brain activity,

accelerometers for detecting motion, a chest band for breathing, and a pulse rate sensor for monitoring heart
rate. The device has a push button for the user to indicate when she goes to bed and when she leaves the bed.
The subjects are instructed to push the button when they enter and leave the bed. Other parameters can be
extracted directly from the sleep report provided by the device. The subject may make mistakes in setting up the
sleep pro�ler or wearing the sensors. For example, they may forget to attach the adhesives that prevent the EEG
electrodes from moving, or remove the sensors and go back to sleep. To ensure that all nights considered in the
study do not have such errors, we ask the subjects to keep a sleep diary, in which they record when they go to
bed and when they wake up, whether they experienced any awakenings during the night, and other comments
that regarding removal of the device. The diary is used to check for consistency with the sleep pro�ler data and
exclude inconsistent nights.
The ground truth data is also used to train the classi�ers. Training and testing are done on di�erent people

and di�erent homes –i.e., for each home, we test a classi�er trained on the other homes.

9 RESULTS
Below we start by showing that EZ-Sleep is more robust to interference than past solutions that use RF-based
signals but rely on the Doppler e�ect. We then evaluate EZ-Sleep’s ability to detect the bed region and extract
the sleep parameters.

9.1 Sensor Robustness
There are two bene�ts for using the spatial information extracted from RF-signals. The �rst is the ability to
detect where and when the user goes to bed. The second, is the fact that we can separate the RF re�ections
from di�erent pixels in space. This latter property allows EZ-Sleep to eliminate interference from other sources
of motion, such as fans, neighbors, etc. In this section, we demonstrate empirically the added robustness due
to this spatial �ltering. We also provide mathematical reasons why Doppler-based solutions common in past
work [5, 31, 32, 39], can be easily confused in the presence of extraneous motion.

We did an experiment where we ask a person to lie on a bed in the same room as the radio device. We ask the
person to be stationary, so that we can focus only on his breathing motion. The RF signal is measured both using
the EZ-Sleep radio and a similar radio, where the only di�erence is that we replace the FMCW and antenna array
setup with measuring the Doppler e�ect as described in [39]. Figure 6a shows that both the Doppler radar and
EZ-Sleep capture the person’s breathing when he is the only source of motion in the environment. We repeat the
same experiment, but this time with another person present in an adjacent room. Figure 6b shows the results.
The second person is stationary in the �rst half of the experiment, and starts walking around the 12th second.
For the Doppler-based approach, even before the second person starts walking, his presence disturbs the signal
making it hard to track the breathing of the person in the bed. This gets worse when the person starts walking, as
shown in the second half of Figure 6b. In contrast, EZ-Sleep’s signal stays clean and clearly re�ects the breathing
of the subject in the bed.

The above results can be explained as follows. A Doppler-based sensor transmits a single frequency and detects
the chest displacement x0 (t ) by looking at the baseband signal B (t ) at the receiver [39]:

B (t ) = A0cos (
4�x0 (t )

�

+C0), (4)

where A0 is proportional to the amplitude of the re�ection, � is the wavelength, and C0 is a constant that depend
on the person’s distance from the device. The chest motion x0 (t ) can be inferred from the phase of the signal B (t ).
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Fig. 6. EZ-Sleep vs. Doppler based approaches. The signal using the Doppler e�ect gets disturbed in the presence of other
motion in the environment.

However, in the presence of another source of motion with displacement x1 (t ), the baseband signal becomes:

H
B (t ) = A0cos (

4�x0 (t )
�

+C0) +A1 (t )cos (
4�x1 (t )

�

+C1 (t )) (5)

where A1 (t ) is proportional to the amplitude of the second re�ection and C1 (t ) is related to the second person’s
distance. Without knowing how the second person moves, both A1 (t ) and C1 (t ) are unknown, and one can no
longer infer x0 (t ). Moreover, since both terms could change over time, estimating the periodicity of x0 (t ) becomes
challenging. Hence, Doppler-based approaches cannot estimate the breathing rate accurately in this scenario. In
contrast, combining FMCW with an antenna array (Section 4) allows EZ-Sleep to separate the two re�ections
using the fact that they come from di�erent spatial pixels. Therefore, we can extract cleaner breathing signal, as
shown in Figure 6b, even in the presence of other people.

9.2 Identifying Bed Areas
We compare the bed areas identi�ed by EZ-Sleep with the ground truth location of the bed. The ground truth is
obtained using careful measurements of the location of the bed and the layout of each home using laser distance
meters with an accuracy of 0.06”. To train our bed model we divide the data into two sets, each cover 4 homes.
We train the model on one set and test it on the other. We then swap the training and test sets. Thus, the model is
asked to predict the bed area for new homes that it did not see in the training phase.
Figure 7 shows the results of our bed identi�cation. The �gure shows the �oor plans from all 8 homes. The

location of the EZ-Sleep device is illustrated using a blue rectangle. We label the ground truth bed areas using the
red boxes and show the bed areas identi�ed by EZ-Sleep in dark green. Note that in the homes in (c) and (g),
EZ-Sleep monitor two beds simultaneously.
As shown in Figure 7, EZ-Sleep correctly identi�ed the bed areas for all 8 homes, even at places where there

are two beds in the coverage area (7c and 7g). Note that the identi�ed bed area usually covers a subregion of
the physical bed. As explained in Section 5, these areas are obtained using the location data when the person is
stationary and breathing is the only motion. These areas represent the chest, abdomen and face of the person.
Having this ability to accurately estimate the spacial pixels that re�ect the user’s breathing allows us to zoom in
on the subject during their sleep to estimate the sleep parameters avoiding a scan of a larger 3D space.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Bed areas identified by EZ-Sleep. Locations of EZ-Sleep are illustrated with blue rectangles. The red boxes represent
the ground truth bed areas and the green areas show the identified bed areas.

9.3 Accuracy of Sleep Parameters
In this section, we evaluate EZ-Sleep’s accuracy of detecting bed entry and exit events, and estimating the various
sleep parameters. We distinguish scenarios in which the sensor monitors one subject and one bed from scenarios
in which the sensor monitors two subjects in two beds.

9.3.1 Single User Scenarios. Let us start by reporting the accuracy of detecting bed entry and exit events and
the resulting time in bed (TIB). As explained earlier, EZ-Sleep uses an HMM based approach to identify bed
entries and exits. The average error of the HMM in detecting bed entries and exits are 1.8 minutes and 1.3 minutes,
respectively. The entries and exits are used to compute the TIB, which has an average error of 3.15 minutes.

To show the individual errors for all subjects and all nights, we show in Figure 8 a scatter plot of the predicted
TIB values versus the actual TIB values. The TIB values in our dataset range from 273 minutes to 564 minutes.
Most of the points in Figure 8 lie on the diagonal line. This shows that EZ-Sleep achieves high accuracy of TIB
estimation across a wide range of sleep schedules.
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Next, we compare the other sleep parameters predicted by EZ-Sleep to their ground truth values. Figure 9
shows scatter plots of the predicted sleep parameters vs. their ground truth values taken over all subjects and
all nights. Table 1 summarizes the statistics in the scatter plots and presents the average, mean and standard
deviation of the prediction error, for the various sleep parameters. The table shows that EZ-Sleep has high
accuracy. Speci�cally, its average error in predicting TST, SL, SE, and WASO is 10.3 min, 4.9 min, 2.8%, and 8.2 min,
respectively. These results are comparable to medical grade actigraphy-based insomnia monitors and within the
clinically meaningful ranges [30].

Sleep Parameter Average Error Median Error Standard Deviation of Error
Time in Bed (TIB) 3.15 (min) 0.14 (min) 6.11 (min)

Total Sleep Time (TST) 10.3 (min) 8.5 (min) 7.7 (min)
Sleep Latency (SL) 4.9 (min) 4.3 (min) 3.1 (min)
Sleep E�ciency (SE) 2.8 (%) 2.6 (%) 2.1 (%)

Wake After Sleep Onset (WASO) 8.2 (min) 6.2 (min) 8.5 (min)

Table 1. Accuracy of Sleep Parameters for Single User Scenarios
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Fig. 9. Sca�er plots of the predicted sleep parameters versus their ground truth values.

9.3.2 Monitoring Multiple Users. Finally, we show that EZ-Sleep can simultaneously monitor multiple subjects
sleeping in their corresponding beds. We have two homes where the RF signal covers two beds, as shown in
Figure 7c and 7g. Table 2 presents the error statistics for simultaneously monitoring two people sleeping in the
same home. The table shows that the errors in TST, SL, and WASO are a few minutes higher than in the case of a
single person. This is expected because while mechanisms like antenna array separate signals from di�erent
directions, the separation is not perfect (due to the array’s side lobes). Thus, the presence of a second person can
add a small disturbance to the signal from the other person, particularly if the two people are close to each other.
However, the errors are still small and comparable to medical grade actigraphy [30]. This result is particularly
interesting since it shows that EZ-Sleep is the �rst RF-based sleep sensor that is capable of monitoring multiple
people simultaneously.

10 CONCLUSION
We have presented EZ-Sleep, a new approach to monitoring insomnia and sleep de�ciencies. EZ-Sleep is both
accurate and easy to use. All that the user has to do is to put the device in her bedroom and plug it to the power
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Sleep Parameter Average Error Median Error Standard Deviation of Error
Time in Bed (TIB) 0.2 (min) 0.1 (min) 0.2 (min)

Total Sleep Time (TST) 15.8 (min) 15.5 (min) 11.8 (min)
Sleep Latency (SL) 7.6 (min) 7.0 (min) 6.4 (min)
Sleep E�ciency (SE) 1.8 (%) 2.2 (%) 1.2 (%)

Wake After Sleep Onset (WASO) 13.1 (min) 13.5(min) 12.1 (min)

Table 2. Accuracy of Sleep Parameters for Multi User Scenarios.

outlet. EZ-Sleep automatically �gures out where the user sleeps, and continuously monitors her sleep parameters.
It has high accuracy in monitoring sleep latency, sleep e�ciency, total sleep time, time in bed, and wake after
sleep onset. Furthermore, one device can monitor multiple users sleeping in di�erent beds.
We believe EZ-Sleep provides an important improvement over the state-of-the-art insomnia monitoring. We

expect future research to continue to expand the capabilities of RF-based monitoring devices. In particular, in
this paper we associate the identities of users with the beds they sleep on. One could incorporate past work that
identi�es users from radio re�ections [10, 47] with EZ-Sleep to deal with cases where users do not sleep in the
same place across multiple nights. Also, we only looked at scenarios where each user sleep alone in the bed. More
advances can lead to accurate sleep monitoring of multiple users in the same bed using radio signals. Finally, our
experiments were conducted on healthy subjects. Future work should experiment with more diverse populations
and might integrate monitoring with treatment.
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